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Abstract We study space-time regularity of the solution of the nonlinear stochastic
heat equation in one spatial dimension driven by space-time white noise, with a rough
initial condition. This initial condition is a locally finite measure μ with, possibly,
exponentially growing tails. We show how this regularity depends, in a neighborhood
of t = 0, on the regularity of the initial condition. On compact sets in which t > 0,
the classical Hölder-continuity exponents 1

4− in time and 1
2− in space remain valid.

However, on compact sets that include t = 0, the Hölder continuity of the solution is(
α
2 ∧ 1

4

)− in time and
(
α ∧ 1

2

)− in space, provided μ is absolutely continuous with
an α-Hölder continuous density.
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1 Introduction

Over the last few years, there has been considerable interest in the stochastic heat
equation with non-smooth initial data:

{(
∂
∂t − ν

2
∂2

∂x2

)
u(t, x) = ρ(u(t, x)) Ẇ (t, x), x ∈ R, t ∈ R

∗+,

u(0, ·) = μ(·).
(1.1)

In this equation, Ẇ is a space-time white noise, ρ : R → R is a globally Lipschitz
function and R

∗+ = ]0,∞[ . The initial data μ is a signed Borel measure, which we
assume belongs to the set

MH (R) :=
⎧
⎨

⎩
signed Borel measures μ, s.t.

∫

R

e−ax2 |μ|(dx)<+∞, for all a >0

⎫
⎬

⎭
.

In this definition, |μ| := μ+ + μ−, where μ = μ+ − μ− and μ± are the two non-
negative Borel measures with disjoint support that provide the Jordan decomposition
of μ. The set MH (R) can be equivalently characterized by the condition that

(|μ| ∗ Gν(t, ·)) (x) =
∫

R

Gν(t, x − y)|μ|(dy) < +∞ , for all t > 0 and x ∈ R,

(1.2)

where ∗ denotes the convolution in the space variable and Gν(t, x) is the one-
dimensional heat kernel function

Gν(t, x) := 1√
2πνt

exp

{
− x2

2νt

}
, (t, x) ∈ R

∗+ × R . (1.3)

Therefore, MH (R) is precisely the set of initial conditions for which the homogeneous
heat equation has a solution for all time.

The use of non-smooth initial data is initially motivated by the parabolic Anderson
model (in which ρ(u) = u) with initial condition given by the Dirac delta function
μ = δ0 (see [2], and more recently, [6,7,13]). These papers are mainly concerned with
the study of the intermittency property, which is a property that concerns the behavior
of moments of the solution u(t, x). Some very precise moment estimates have also
been recently obtained by the authors in [5].

In this paper, we are interested in space-time regularity of the sample paths (t, x) �→
u(t, x), and, in particular, in how this regularity depends, in a neighborhood of {0}×R,
on the regularity of the initial condition μ.

Given a subset D ⊆ R+ × R and positive constants β1, β2, denote by Cβ1,β2(D)

the set of functions v : R+ × R → R with the following property: for each compact
subset D̃ ⊂ D, there is a finite constant c such that for all (t, x) and (s, y) in D̃,

|v(t, x) − v(s, y)| ≤ c
(|t − s|β1 + |x − y|β2

)
.

123



318 Stoch PDE: Anal Comp (2014) 2:316–352

Let

Cβ1−,β2−(D) := ∩α1∈ ]0,β1[ ∩α2∈ ]0,β2[ Cα1,α2(D).

When the measure μ has a bounded density f with respect to Lebesgue measure, then
the initial condition is written u(0, x) = f (x), for all x ∈ R. When f is bounded,
then the Hölder continuity of u was already studied in [28, Corollary 3.4, p. 318]. In
[2], it is stated, for the parabolic Anderson model, that if the initial data satisfies

sup
t∈[0,T ]

sup
x∈R

√
t (μ ∗ Gν(t, ◦)) (x) < ∞, for all T > 0,

then u ∈ C 1
4 −, 1

2 −(R∗+ × R), a.s. In [21,26], this result is extended to the case where
the initial data is a continuous function with tails that grow at most exponentially at
±∞. Hölder continuity properties for more general parabolic problems, but mainly on
bounded domains rather than R, and with function-valued initial conditions, have aso
been obtained using maximal inequalities and stochastic convolutions: see [3,20,25].

Sanz-Solé and Sarrà [24] considered the stochastic heat equation over R
d with

spatially homogeneous colored noise which is white in time. Assuming that the spectral
measure μ̃ of the noise satisfies

∫

Rd

μ̃(dξ)
(
1 + |ξ |2)η < +∞, for some η ∈ ]0, 1[, (1.4)

they proved that if the initial data is a bounded ρ-Hölder continuous function for some
ρ ∈ ]0, 1[, then

u ∈ C 1
2 (ρ∧(1−η))−,ρ∧(1−η)− (R+ × R) , a.s.,

where a ∧ b := min(a, b). For the case of space-time white noise on R+ × R, the
spectral measure μ̃ is Lebesgue measure and hence the exponent η in (1.4) (with
d = 1) can take the value 1

2 − ε for any ε > 0. Their result ([23, Theorem 4.3])
implies that

u ∈ C( 1
4 ∧ ρ

2

)
−,
(

1
2 ∧ρ

)
− (R+ × R) , a.s.

More recently, in the paper [6, Lemma 9.3], assuming that the initial condition μ is
a finite measure, Conus et al obtain tight upper bounds on moments of u and bounds
on moments of spatial increments of u at fixed positive times: in particular, they show
that u is Hölder continuous in x with exponent 1

2 − ε.
Finally, in the papers [11,12], Dalang et al. considered a system of stochastic heat

equations with vanishing initial conditions driven by space-time white noise, and
proved that u ∈ C 1

4 −, 1
2 − (R+ × R).

The purpose of this paper is to extend the above results to the case where μ ∈
MH (R). In particular, we show that u ∈ C 1

4 −, 1
2 −
(
R

∗+ × R
)
. Indeed, it is necessary

to exclude the line {0} × R unless the initial data μ has a density f that is sufficiently
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smooth (see part (2) of Theorem 3.1). Indeed, in this case, the regularity of u in the
neighborhood of t = 0 can be no better than the regularity of f .

Recall that the rigorous interpretation of (1.1), used in [5], is the following integral
equation:

u(t, x) = J0(t, x) + I (t, x),

I (t, x) =
∫∫

[0,t]×R

Gν (t − s, x − y) ρ (u (s, y)) W (ds, dy) , (1.5)

where J0(t, x) := (μ ∗ Gν(t, ·)) (x), and the stochastic integral is interpreted in the
sense of Walsh [28]. The regularity of (t, x) �→ J0(t, x) is classical (see Lemma 2.3),
so the main effort is to understand the Hölder-regularity of (t, x) �→ I (t, x) at t =
0. This is a delicate issue. In Theorem 3.1 and Proposition 4.3, we give sufficient
conditions for sample path Hölder continuity of this function at t = 0 . However, we
have not resolved this question for all initial conditions μ. We do, however, show that
for certain absolutely continuous μ with a locally unbounded density f , the function
t �→ u(t, x) from [0, 1] into L p(�,F , P), can have an optimal Hölder exponent that
is arbitrarily close to 0 (see Proposition 3.5).

The difficulties for proving the Hölder continuity of u lie in part in the fact that for
initial data satisfying (1.2), E

[|u(t, x)|p
]

need not be bounded over x ∈ R, and mainly
in the fact that the initial data is irregular. Indeed, standard techniques, which isolate
the effects of initial data by using the L p(�)-boundedness of the solution, fail in our
case (see Remark 3.2). Instead, the initial data play an active role in our proof. We
also note that Fourier transform techniques are not directly applicable here because μ

need not be a tempered measure.
Finally, it is natural to ask in what sense the measure μ is indeed the initial condition

for the stochastic heat equation? We show in Proposition 3.4 that u(t, ·) converges
weakly (in the sense of distribution theory) to μ as t ↓ 0, so that μ is the initial
condition of (1.1) in the classical sense used for deterministic p.d.e.’s [14, Chapter 7,
Sect. 1].

The paper is structured as follows. In Sect. 2, we recall the results of [5] that we
need here. Our main results are stated in Sect. 3. The proofs are presented in Sect. 4.
Finally, some technical lemmas are listed in the appendix.

2 Some preliminaries

Let W = {
Wt (A), A ∈ B f (R) , t ≥ 0

}
be a space-time white noise defined on a

complete probability space (�,F , P), where B f (R) is the collection of Borel sets
with finite Lebesgue measure. Let

F0
t = σ

(
Ws(A), 0 ≤ s ≤ t, A ∈ B f (R)

) ∨ N , t ≥ 0,

be the natural filtration of W augmented by the σ -field N generated by all P-null sets
in F . For t ≥ 0, define Ft := F0

t+ = ∧s>tF0
s . In the following, we fix the filtered

probability space {�,F , {Ft , t ≥ 0}, P}. We use ||·||p to denote the L p(�)-norm
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(p ≥ 1). With this setup, W becomes a worthy martingale measure in the sense of
Walsh [28], and

∫∫
[0,t]×R

X (s, y)W (ds, dy) is well-defined in this reference for a
suitable class of random fields {X (s, y), (s, y) ∈ R+ × R}.

In this paper, we use � to denote the simultaneous convolution in both space and
time variables.

Definition 2.1 A process u = (
u(t, x), (t, x) ∈ R

∗+ × R
)

is called a random field
solution to (1.5) if the following four conditions are satisfied:

(1) u is adapted, i.e., for all (t, x) ∈ R
∗+ × R, u(t, x) is Ft -measurable;

(2) u is jointly measurable with respect to B(R∗+ × R) × F ;
(3)

(
G2

ν � ||ρ(u)||22
)
(t, x) < +∞ for all (t, x) ∈ R

∗+ × R, and the function (t, x) �→
I (t, x) mapping R

∗+ × R into L2(�) is continuous;
(4) u satisfies (1.5) a.s., for all (t, x) ∈ R

∗+ × R.

Assume that ρ : R �→ R is globally Lipschitz continuous with Lipschitz constant
Lipρ > 0. We consider the following growth conditions on ρ: for some constants
Lρ > 0 and ς ≥ 0,

|ρ(x)|2 ≤ L2
ρ

(
ς2 +x2

)
, for all x ∈ R. (2.1)

Note that Lρ ≤ √
2 Lipρ , and the inequality may be strict. Of particular importance

is the linear case (the parabolic Anderson model): ρ(u) = λu with λ �= 0, which is a
special case of the following quasi-linear growth condition: for some constant ς ≥ 0,

|ρ(x)|2 = λ2
(
ς2 +x2

)
, for all x ∈ R. (2.2)

Define the kernel functions:

K(t, x) = K(t, x; ν, λ) := G ν
2
(t, x)

(
λ2

√
4πνt

+ λ4

2ν
e

λ4 t
4ν �

(

λ2

√
t

2ν

))

, (2.3)

H(t) = H(t; ν, λ) := (1 � K) (t, x) = 2e
λ4 t
4ν �

(

λ2

√
t

2ν

)

− 1, (2.4)

where �(x) = ∫ x
−∞(2π)−1/2e−y2/2dy, and the formula on the right-hand side is

explained in [5, (2.18)]. Some functions related to�(x) are the error functions erf(x) =
2√
π

∫ x
0 e−y2

dy and erfc(x) = 1 − erf(x). Clearly, �(x) =
(

1 + erf(x/
√

2)
)

/2.

Let z p be the universal constant in the Burkholder-Davis-Gundy inequality (see [8,
Theorem 1.4], in particular, z2 = 1) which satisfies z p ≤ 2

√
p for all p ≥ 2. Let ap,ς

be the constant defined by

ap,ς :=

⎧
⎪⎨

⎪⎩

2(p−1)/p if ς �= 0, p > 2,√
2 if ς = 0, p > 2,

1 if p = 2.
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Notice that ap,ς ∈ [1, 2]. Denote K(t, x) := K(t, x; ν, Lρ), K̂p(t, x) = K(t, x;
ν, ap,ς z p Lρ) and H(t) := H(t; ν, Lρ), Ĥp(t) = H(t; ν, ap,ς z p Lρ).

The following theorem is mostly taken from [5, Theorem 2.4], except that (2.7)
comes from [5, Corollary 2.8].

Theorem 2.2 (Existence, uniqueness and moments) Suppose that the function ρ is
Lipschitz continuous and satisfies (2.1), and μ ∈ MH (R). Then the stochastic integral
equation (1.5) has a random field solution u = {u(t, x), (t, x) ∈ R

∗+ ×R}. Moreover:

(1) u is unique (in the sense of versions).
(2) (t, x) �→ u(t, x) is L p(�)-continuous for all integers p ≥ 2.
(3) For all even integers p ≥ 2, all t > 0 and x, y ∈ R,

||u(t, x)||2p ≤
{

J 2
0 (t, x) + (J 2

0 � K) (t, x) + ς2 H(t), if p = 2,

2J 2
0 (t, x) + (2J 2

0 � K̂p
)
(t, x) + ς2 Ĥp(t), if p > 2.

(2.5)

(4) In particular, if |ρ(u)|2 = λ2
(
ς2 +u2

)
, then for all t > 0 and x, y ∈ R,

||u(t, x)||22 = J 2
0 (t, x) +

(
J 2

0 � K
)

(t, x) + ς2 H(t). (2.6)

Moreover, if μ = δ0 (the Dirac delta function), then

||u(t, x)||22 = 1

λ2 K(t, x) + ς2 H(t). (2.7)

The next lemma is classical. A proof can be found in [5, Lemma 3.8].

Lemma 2.3 The function (t, x) �→ J0(t, x) = (μ ∗ Gν(t, ·)) (x) with μ ∈ MH (R) is
smooth for t > 0: J0(t, x) ∈ C∞ (

R
∗+ × R

)
. If, in addition, μ(dx) = f (x)dx where f

is continuous, then J0 is continuous up to t = 0: J0 ∈ C∞ (
R

∗+ × R
) ∩ C (R+ × R),

and if f is α-Hölder continuous, then J0 ∈ C∞ (
R

∗+ × R
) ∩ Cα/2,α (R+ × R).

For p ≥ 2 and X ∈ L2 (R+ × R, L p(�)), set

||X ||2M,p :=
∫∫

R
∗+×R

||X (s, y)||2p dsdy < +∞.

When p = 2, we write ||X ||M instead of ||X ||M,2. In [28],
∫∫

XdW is defined for pre-
dictable X such that ||X ||M < +∞. Let Pp denote the closure in L2 (R+ × R, L p(�))

of simple processes. Clearly, P2 ⊇ Pp ⊇ Pq for 2 ≤ p ≤ q < +∞, and according to
Itô’s isometry,

∫∫
XdW is well-defined for all elements of P2. The next lemma, taken

from [5, Lemma 3.3], gives easily verifiable conditions for checking that X ∈ P2.
In the following, we will use · and ◦ to denote the time and space dummy variables
respectively.

Lemma 2.4 Let G(s, y) be a deterministic measurable function from R
∗+ × R to R

and let Z = (Z (s, y) , (s, y) ∈ R
∗+ × R

)
be a process with the following properties:
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(1) Z is adapted and jointly measurable with respect to B(R2) × F;

(2) E

[∫∫
[0,t]×R

G2 (t − s, x − y) Z2 (s, y) dsdy
]

< ∞, for all (t, x) ∈ R+ × R.

Then for each (t, x) ∈ R+ × R, the random field (s, y) ∈ ]0, t[ ×R �→
G (t − s, x − y) Z (s, y) belongs to P2 and so the stochastic convolution

(G � Z Ẇ )(t, x) :=
∫∫

[0,t]×R

G (t − s, x − y) Z (s, y) W (ds, dy)

is a well-defined Walsh integral and the random field G � Z Ẇ is adapted. Moreover,
for all even integers p ≥ 2 and (t, x) ∈ R+ × R,

∣∣∣∣(G � Z Ẇ )(t, x)
∣∣∣∣2

p ≤ z2
p ||G(t − ·, x − ◦)Z(·, ◦)||2M,p .

3 Main results

If the initial data is of the form μ(dx) = f (x)dx , where f is a bounded function, then
it is well-known (see [28]) that the solution u is bounded in L p(�) for all p ≥ 2. In
addition, by the moment formula (2.5),

sup
(t,x)∈[0,T ]×R

||u(t, x)||2p ≤ 2 C2 +
(

2 C2 + ς2
)

Ĥp (T ) < +∞, for all T > 0,

(3.1)

where C = supx∈R | f (x)| = sup(t,x)∈R+×R J0(t, x). From this bound, one can easily
derive that that u ∈ C1/4−,1/2−

(
R

∗+ × R
)
, a.s.: see Remark 4.6 below. We will extend

this classical result to the case where μ can be unbounded either locally, such as
μ = δ0, or at ±∞, such as μ(dx) = e|x |a dx , a ∈ ]1, 2[ , or both. However, for
irregular initial conditions, Hölder continuity of u will be obtained only on R

∗+ × R,
and this continuity extends to R+ × R when the initial condition is continuous.

We need a set of initial data defined as follows:

M∗
H (R) :=

{
μ(dx) = f (x)dx, s.t. ∃a ∈ ]1, 2[ , sup

x∈R

| f (x)|e−|x |a < +∞
}

.

Clearly, M∗
H (R) ⊂ MH (R), and M∗

H (R) includes all absolutely continuous mea-
sures whose density functions are bounded by functions of the type c1ec2|x |a with
c1, c2 > 0 and a ∈ ]1, 2[ (see Lemma 5.1).

Theorem 3.1 Suppose that ρ is Lipschitz continuous. Then the solution u(t, x) =
J0(t, x) + I (t, x) to (1.5) has the following sample path regularity:

(1) If μ ∈ MH (R), then I ∈ C 1
4 −, 1

2 −
(
R

∗+ × R
)

a.s. Therefore,

u = J0 + I ∈ C 1
4 −, 1

2 −
(
R

∗+ × R
)
, a.s.
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(2) Ifμ ∈ M∗
H (R), then I ∈ C 1

4 −, 1
2 − (R+ × R), a.s. If, in addition,μ(dx) = f (x)dx,

where f is a continuous function, then

u ∈ C (R+ × R) ∩ C 1
4 −, 1

2 −
(
R

∗+ × R
)
, a.s.

If μ ∈ M∗
H (R) and, in addition, μ(dx) = f (x)dx, where f is an α-Hölder

continuous function, then

u ∈ C( α
2 ∧ 1

4

)
−,
(
α∧ 1

2

)
− (R+ × R) ∩ C 1

4 −, 1
2 −
(
R

∗+ × R
)
, a.s.

This theorem will be proved in Sect. 4.2.

Remark 3.2 The standard approach (e.g., that is used in [9], [10, p. 54 –55], [24,26]
and [28]) for proving Hölder continuity cannot be used to establish the above theorem.
For instance, consider the case where ρ(u) = u and μ = δ0. The classical argument,
as presented in [26, p. 432] (see also the proof of Proposition 1.5 in [1] and the proof of
Corollary 3.4 in [28]), uses Burkholder’s inequality for p > 1 and Hölder’s inequality
with q = p/(p − 1) to obtain

∣
∣
∣
∣I (t, x) − I (t ′, x ′)

∣
∣
∣
∣2p
2p ≤C p,T

⎛

⎜
⎝

t∨t ′∫

0

∫

R

dsdy
(
Gν(t − s, x − y) − G(t ′ − s, x ′ − y′)

)2

⎞

⎟
⎠

p/q

×
t∨t ′∫

0

∫

R

dsdy
(
Gν(t − s, x − y) − G(t ′ − s, x ′ − y′)

)2

×
(

1 + ||u(s, y)||2p
2p

)
.

However, by Hölder’s inequality, (2.7) and (2.3),

||u(s, y)||22p ≥ ||u(s, y)||22 ≥ Gν/2(s, y)
1√

4πνs
.

Therefore, ||u(s, y)||2p
2p ≥ CGν/(2p)(s, y)s1/2−p. The second term in the above bound

is not ds–integrable in a neighborhood of {0} × R unless p < 3/2. Therefore, this
classical argument does not apply in the presence of an irregular initial condition such
as δ0.

Example 3.3 (Dirac delta initial data) Suppose ρ(u) = λu with λ �= 0. If μ = δ0,
then neither x �→ J0(0, x) nor x �→ limt→0+ ||I (t, x)||2 is a continuous function.
Indeed, this is clear for J0(0, x) = δ0(x). For limt→0+ ||I (t, x)||2, by (2.7),

||I (t, x)||22 = ||u(t, x)||22 − J 2
0 (t, x) = λ2

2ν
e

λ4 t
4ν �

(

λ2

√
t

2ν

)

Gν/2(t, x).
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Therefore, limt→0+ ||I (t, x)||22 equals 0 if x �= 0, and +∞ if x = 0. (We note that
I (0, x) ≡ 0 by definition).

Example 3.3 suggests that ||I (t, x)||22 tends to λ2

4ν
δ0(x) as t → 0+ in the weak

sense, i.e.,

lim
t→0+

〈
||I (t, ·)||22 , φ(·)

〉
= λ2

4ν
φ(0), for all φ ∈ C∞

c (R),

where C∞
c (R) denotes smooth functions with compact support. Furthermore, the fol-

lowing proposition shows that the random field solution of (1.5) satisfies the initial
condition u(0, ◦) = μ in a weak sense.

Proposition 3.4 For all φ ∈ C∞
c (R) and μ ∈ MH (R),

lim
t→0+

∫

R

dx u(t, x)φ(x) =
∫

R

μ(dx) φ(x) in L2(�).

The proof of this proposition is presented in Sect. 4.5. In the next proposition, rather
than considering sample path continuity, we shows that the map t �→ I (t, x), from
[0, 1] into L p(�,F , P), may be quite far from 1

4 –Hölder continuous at the origin,
and in fact, the Hölder-exponent may be arbitrarily near 0.

Proposition 3.5 Suppose ρ(u) = λu with λ �= 0 and μ(dx) = |x |−a dx with 0 <

a ≤ 1, so that J0(0, x) = |x |−a is not locally bounded. Fix p ≥ 2. Then:

(1) If a < 1/2, then for all x ∈ R, limt→0+ ||I (t, x)||p ≡ 0.

(2) There is c > 0 such that for all t > 0, ||I (t, 0)||p ≥ c t
1−2a

4 .

In particular, when 1
2 < a < 1, limt→0+ ||I (t, 0)||p = +∞, and when 0 < a < 1

2 ,

t �→ I (t, 0) from R+ to L p(�) cannot be smoother than 1−2a
4 –Hölder continuous (in

this case 1−2a
4 ∈ ]0, 1/4[ ).

Proof (1) By the moment bounds formulas (2.5) and (2.6), it suffices to consider
second moment and show that limt→0+ ||I (t, x)||2 ≡ 0. For some constant Ca > 0,
the Fourier transform of μ is Ca |x |−1+a (see [27, Lemma 2 (a), p. 117]), which is
non-negative. Hence Bochner’s theorem (see, e.g., [15, Theorem 1, p. 152]) implies
that μ, and therefore x �→ J0(t, x), is non-negative definite. Such functions achieves
their maximum at the origin (see, e.g., [15, Theorem 1, p. 152]), and so

0 < J0(t, x) ≤ J0(t, 0) =
∫

R

dy
1

|y|a Gν(t, y) = 2

+∞∫

0

dy
e−y2/(2νt)

ya
√

2πνt
.

Then by a change of variable and using Euler’s integral (see [19, 5.2.1, p.136]),

J0(t, 0) = 2

+∞∫

0

du
e−u

(2νtu)a/2
√

2πνt

√
2νt

2
√

u
= �

( 1−a
2

)

√
π(2νt)a/2

, (3.2)
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where �(x) is Euler’s Gamma function [19]. By (2.6) and the above bound,

||I (t, x)||22 =
(

J 2
0 � K

)
(t, x) ≤

t∫

0

ds

(
λ2

√
4πν(t − s)

+ λ4

2ν
e

λ4(t−s)
4ν

)
C

sa
.

The integral converges if and only if a < 1. Finally, using the Beta integral (see [19,
(5.12.1), p. 142])

t∫

0

ds sμ−1(t − s)ν−1 = tμ+ν−1 �(μ)�(ν)

�(μ + ν)
, for t > 0, μ > 0 and ν > 0, (3.3)

we see that ||I (t, x)||22 ≤ C1 t1/2−a + C2 t1−a , so limt→0+ ||I (t, x)||22 = 0 when
a < 1/2.

(2) Now consider the function t �→ I (t, 0) from R+ to L p(�). Since (x − y)2 ≤
2(x2 + y2), as in (3.2), we see that

J0(t, x) =
∫

R

dy
1

|y|a Gν (t, x − y) ≥ 1√
2

exp

(
− x2

νt

)
�
( 1−a

2

)

√
π

1

(νt)a/2 .

Hence,

J 2
0 (t, x) ≥ CGν/2

(
t

2
, x

)
t1/2−a .

Since K(t, x) ≥ Gν/2(t, x) λ2√
4πνt

by (2.3),

||I (t, x)||22 ≥
C ′ exp

(
− 2x2

νt

)

t

t∫

0

ds s1/2−a = C ′′ exp

(
−2x2

νt

)
t

1−2a
2 .

If x = 0, then for all integers p ≥ 2, since I (0, x) ≡ 0,

||I (t, 0) − I (0, 0)||2p ≥ ||I (t, 0)||22 ≥ C ′′ t
1−2a

2 .

When 0 < a < 1/2, the function t �→ I (t, 0) from R+ to L p(�) cannot be smoother
than η-Hölder continuous at t = 0 with η = 1−2a

4 ∈ ]0, 1/4[ . ��

4 Proofs of the main results

Establishing Hölder continuity relies on Kolmogorov’s continuity theorem. We present
a formulation of this result that is suitable for our purposes.
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4.1 Kolmogorov’s continuity theorem

For x = (x1, . . . , xN ) and y = (y1, . . . , yN ), define

τα1,...,αN (x, y) :=
N∑

i=1

|xi − yi |αi , with α1, . . . , αN ∈ ]0, 1]. (4.1)

This defines a metric on R
N that is not induced by a norm except when αi = 1 for

i = 1, . . . , N . We refer the interested readers to [16, Theorem 4.3] or [22, Theorem
2.1, on p. 62] for the isotropic case (α1 = · · · = αN ). For the anisotropic case (where
the αi are not identical), see [17, Theorem 1.4.1, p. 31] and [11, Corollary A.3, p. 34].
We state a version (Proposition 4.2 below), which is a consequence of these references
and is convenient for our purposes.

Definition 4.1 (Hölder continuity) A function f : D �→ R with D ⊆ R
N is said

to be locally (and uniformly) Hölder continuous with indices (α1, . . . , αN ) if for
all compact sets K ⊆ D, there exists a constant AK such that for all x, y ∈ K ,
| f (x) − f (y)| ≤ AK

∑N
i=1 |xi − yi |αi .

Proposition 4.2 Let {X (t, x) : (t, x) ∈ R+ × R
d} be a random field indexed by

R+ × R
d . Suppose that there exist d + 1 constants αi ∈ ]0, 1], i = 0, 1, . . . , d, and

p >
∑d

i=0 α−1
i such that, for all n > 1, there is a constant C p,n such that

||X (t, x) − X (s, y)||p ≤ C p,nτα0,...,αd ((t, x), (s, y)) ,

for all (t, x) and (s, y) in Kn := [1/n, n] × [−n, n]d , where the metric τα0,...,αd is
defined in (4.1) with N = d + 1. Then X has a modification which is locally Hölder
continuous in R

∗+ × R
d with indices (βα0, . . . , βαd), for all β ∈ ]

0, βp
[
, where

βp = 1 − p−1∑d
i=0 α−1

i . In addition, for all 0 ≤ β < βp,

E

⎡

⎢⎢
⎣

⎛

⎜⎜
⎝ sup

(t,x),(s,y)∈Kn

(t,x) �=(s,y)

|X (t, x) − X (s, y)|
[τα0,...,αd ((t, x), (s, y))]β

⎞

⎟⎟
⎠

p⎤

⎥⎥
⎦ < +∞.

If the compact sets Kn can be taken to be [0, n]×[−n, n]d , then the same local Hölder
continuity of X extends to R+ ×R

d and the moment bound on increments of X applies
with this new Kn.

4.2 Moment estimates

The main moment estimate that is needed for this proof is the following.

Proposition 4.3 Fix ς ∈ R and μ ∈ MH (R).
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(1) For all p ≥ 2 and n > 1, there is a constant Cn,p such that for all t, t ′ ∈ [1/n, n]
and x, x ′ ∈ [−n, n],

‖I (t, x) − I (t ′, x ′)‖p ≤ Cn,p

(
|t − t ′| 1

4 + |x − x ′| 1
2

)
. (4.2)

(2) If, in addition, μ ∈ M∗
H (R), then there exists a constant C∗

n,p such that for all
(t, x), (t ′, x ′) ∈ [0, n] × [−n, n], (4.2) holds with Cn,p replaced by C∗

n,p.

The proof of this proposition will be given at the end of this section. We note that
by Proposition 3.5, the conclusion in part (2) above is not valid for all μ ∈ MH (R).

Assuming Proposition 4.3, we now prove Theorem 3.1.

Proof of Theorem 3.1 By Lemma 2.3, we only need to establish the Hölder-continuity
statements for I instead of u. Part (1) (respectively (2)) follows from Proposition 4.3(1)
(respectively Proposition 4.3(2)) and Proposition 4.2. This proves Theorem 3.1.

The next two propositions are needed to establish Proposition 4.3.

Proposition 4.4 Given ς ∈ R and μ ∈ MH (R), let J ∗
0 (t, x) = (|μ| ∗ Gν(t, ·)) (x)

and h(t, x) = ς2 +2
[
J ∗

0 (t, x)
]2

. Then we have:

(1) For all n > 1, there exist constants Cn,i , i = 1, 3, 5, such that for all t, t ′ ∈
[1/n, n], with t < t ′, and x, x ′ ∈ [−n, n],
∫∫

[0,t]×R

dsdy h(s, y)
(
Gν (t − s, x − y) − Gν(t

′ − s, x − y)
)2 ≤Cn,1

√
t ′ − t,

(4.3)∫∫

[0,t]×R

dsdy h(s, y)
(
Gν (t − s, x − y) − Gν(t − s, x ′ − y)

)2 ≤Cn,3
∣∣x − x ′∣∣ ,

(4.4)∫∫

[t,t ′]×R

dsdy h(s, y)G2
ν(t

′ − s, x ′ − y) ≤ Cn,5
√

t ′ − t . (4.5)

(2) If, in addition, μ ∈ M∗
H (R), then there exist constants C∗

n,i , i = 1, 3, 5, such that
for all (t, x), (t ′, x ′) ∈ [0, n] × [−n, n], (4.3)–(4.5) hold with Cn,i replaced by
C∗

n,i , i = 1, 3, 5.

Proposition 4.5 Given ς ∈ R and μ ∈ MH (R), let J ∗
0 (t, x) = (|μ| ∗ Gν(t, ·)) (x).

Then:

(1) For all n > 1, there exist three constants

Cn,2 =
√

πn√
4ν

Cn,1, Cn,4 =
√

πn√
4ν

Cn,3, and Cn,6 =
√

πn√
4ν

Cn,5, (4.6)
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such that for all t, t ′ ∈ [1/n, n] with t < t ′ and x, x ′ ∈ [−n, n],
∣
∣∣
((

ς2 +2
∣∣J ∗

0

∣∣2
)

� G2
ν �
(
Gν(·, ◦) − Gν(· + t ′ − t, ◦)

)2)
(t, x)

∣
∣∣≤Cn,2

√
t ′ − t,

(4.7)∣∣∣
((

ς2 +2
∣∣J ∗

0

∣∣2
)

� G2
ν �
(
Gν(·, ◦) − Gν(·, ◦ + x ′ − x)

)2)
(t, x)

∣∣∣≤Cn,4|x ′ − x |,
(4.8)∫∫

[t,t ′]×R

dsdy
((

ς2 +2
∣
∣J ∗

0

∣
∣2
)

� G2
ν

)
(s, y) G2

ν(t
′ − s, x ′ − y)≤Cn,6

√
t ′ − t . (4.9)

(2) If, in addition, μ ∈ M∗
H (R), then there exist constants

C∗
n,2 =

√
n√

πν
C∗

n,1, C∗
n,4 =

√
n√

πν
C∗

n,3, and C∗
n,6 =

√
n√

πν
C∗

n,5,

such that for all (t, x), (t ′, x ′) ∈ [0, n] × [−n, n], (4.7)–(4.9) hold with Cn,i

replaced by C∗
n,i , i = 2, 4, 6.

The proofs of these two propositions are given in the Sects. 4.3 and 4.4. Assuming
Propositions 4.4 and 4.5, we now prove Proposition 4.3.

Proof of Proposition 4.3 We first prove part (1). Without loss of generality, assume
that μ ≥ 0. Otherwise, we simply replace μ in the following arguments by |μ|. Fix
n > 1. By parts (1) of Propositions 4.4 and 4.5, there exist Cn,i > 0 for i = 1, . . . , 6
such that for all (t, x) and (t ′, x ′) ∈ [1/n, n]×[−n, n] with t ′ > t , the six inequalities
in Propositions 4.4 and 4.5 hold. By (2.1) and Lemma 2.4, for all even integers p ≥ 2,

∣∣∣∣I (t, x)− I
(
t ′, x ′)∣∣∣∣p

p ≤2p−1z p
p Lp

ρ I1
(
t, t ′, x, x ′)p/2+2p−1z p

p Lp
ρ I2

(
t, t ′ ; x ′)p/2

,

where

I1
(
t, t ′, x, x ′) =

∫∫

[0,t]×R

dsdy
(
Gν (t − s, x − y) − Gν(t

′ − s, x ′ − y)
)2

×
[
ς2 + ||u (s, y)||2p

]
, (4.10)

I2
(
t, t ′ ; x ′) =

∫∫

[t,t ′]×R

dsdy G2
ν

(
t ′ − s, x ′ − y

) (
ς2 + ||u (s, y)||2p

)
. (4.11)

By the subadditivity of x �→ |x |2/p and since 22(p−1)/p ≤ 4,

∣∣∣∣I (t, x) − I (t ′, x ′)
∣∣∣∣2

p ≤ 4z2
p L2

ρ

[
I1
(
t, t ′, x, x ′)+ I2

(
t, t ′ ; x ′)] .

123



Stoch PDE: Anal Comp (2014) 2:316–352 329

Notice that

K (t, x; ν, λ) = ϒ (t; ν, λ) G2
ν(t, x),

with

ϒ(t; ν, λ) = λ2 + λ4

√
π t

ν
e

λ4 t
4ν �

(

λ2

√
t

2ν

)

.

Denote ϒ∗(t) := ϒ
(
t ; ν, ap,ς z p Lρ

)
< +∞, for all t ∈ R+. Clearly, ϒ∗(t) ≤

ϒ∗(n) for t ≤ n. Hence, it follows from (2.5) and (2.4) that

||u (s, y)||2p ≤ 2 J 2
0 (s, y) + ϒ∗(n)

((
ς2 +2 J 2

0

)
� G2

ν

)
(s, y), for s ≤ t ≤ n.

(4.12)

We shall use this bound in order to estimate I1 and I2.
We first consider the case where x = x ′. Set h = t ′ − t . Then

I1(t, t ′, x, x) ≤
((

ς2 +2J 2
0

)
� (Gν(·, ◦) − Gν(· + h, ◦))2

)
(t, x)

+ ϒ∗(n)
((

ς2 +2J 2
0

)
� G2

ν � (Gν(·, ◦) − Gν(· + h, ◦))2
)

(t, x).

By parts (1) of Propositions 4.4 and 4.5,

I1(t, t ′, x, x) ≤ (Cn,1 + ϒ∗(n)Cn,2
) |h|1/2.

Similarly, we have that

I2
(
t, t ′ ; x ′) ≤ (Cn,5 + ϒ∗(n)Cn,6

) |h|1/2.

Hence, for all x ∈ [−n, n] and 1/n ≤ t < t ′ ≤ n,

∣
∣
∣
∣I (t, x) − I (t ′, x)

∣
∣
∣
∣2

p ≤ 4z2
p L2

ρ

(
Cn,1 + Cn,5 + ϒ∗(n)

(
Cn,2 + Cn,6

)) ∣∣t ′ − t
∣
∣1/2

.

(4.13)

Now consider the case where t = t ′ ≥ 1/n. Denote ζ = x ′−x . In this case, I2 = 0.
By (4.12) above and parts (1) of Propositions 4.4 and 4.5,

∣∣∣∣I (t, x) − I (t, x ′)
∣∣∣∣2

p ≤ 4z2
p L2

ρ

[
Cn,3 + ϒ∗(n)Cn,4

] |ζ |.

Combining this with (4.13), we see that

∣∣∣∣I (t, x) − I (t ′, x ′)
∣∣∣∣2

p ≤ C̃ p,n

(∣∣t ′ − t
∣∣1/2 + ∣∣x ′ − x

∣∣
)

,

for all 1/n ≤ t < t ′ ≤ n, x, x ′ ∈ [−n, n], where C̃ p,n is a finite constant. This
proves (1).
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The conclusion in part (2) can be proved in the same way by applying parts (2)
of Propositions 4.4 and 4.5 below instead of parts (1). We simply replace all Cn,i

above by C∗
n,i for i = 1, . . . , 6. The remaining statements follow immediately. This

completes the proof of Proposition 4.3.

Remark 4.6 (Case of bounded initial data) In the case where the initial data is bounded:
μ(dx) = f (x)dx , where f is a bounded function such that | f (x)| ≤ C , the con-
clusions of Proposition 4.3 follow from the following standard (and much simpler)
argument: By (3.1), for 0 ≤ t ≤ t ′ ≤ T , and x, x ′ ∈ R

I1(t, t ′, x, x ′) ≤ AT

∫∫

[0,t ′]×R

dsdy
(
Gν(t − s, x − y) − Gν(t

′ − s, x ′ − y)
)2

,

where I1(t, t ′, x, x ′) is defined in (4.10) and AT is a finite constant. Then by Propo-
sition 5.2, for some constant C ′ > 0 depending only on ν,

I1
(
t, t ′, x, x ′) ≤ AT C ′ (∣∣x − x ′∣∣+√|t ′ − t |

)
.

Similarly, I2
(
t, t ′, x, x ′), defined in (4.11), is bounded by AT C ′√|t ′ − t | with the

same constants AT and C ′. Therefore,
∣∣∣∣I (t, x) − I (t ′, x ′)

∣∣∣∣2
p ≤ 4z2

p AT C ′ (∣∣x − x ′∣∣+ |t − t ′|1/2
)

,

for all 0 ≤ t ≤ t ≤ T and x, x ′ ∈ R. The Hölder continuity follows from Proposi-
tion 4.2.

4.3 Proofs of part (1) of the Propositions 4.4 and 4.5

Lemma 4.7 For all L > 0, β ∈ ]0, 1[, t > 0, x ∈ R, ν > 0, and h with |h| ≤ βL,
we have that

|Gν(t, x + h) − Gν(t, x)|
≤ |h|

(
C√
2νt

+ 1

(1 − β)L

)

×
[

Gν(t, x) + e
3L2
2νt {Gν (t, x − 2L ) + Gν (t, x + 2L)}

]

and

|Gν(t, x + h) + Gν(t, x − h) − 2Gν(t, x)|
≤ 2|h|

(
C√
2νt

+ 1

(1 − β)L

)

×
[

Gν(t, x) + e
3L2
2νt {Gν (t, x − 2L) + Gν (t, x + 2L)}

]
,

where C := supx∈R
1
|x | |e−x2/2 − 1| ≈ 0.451256.
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Proof Fix L > 0 and β ∈ ]0, 1[. Assume that |h| ≤ βL . Define

f (t, x, h) = Gν(t, x + h) + Gν(t, x − h) − 2Gν(t, x),

I (t, x, h) =
{

h−1 G−1
ν (t, x − L)

[
Gν(t, x + h) − Gν(t, x)

]
if x ≥ 0,

h−1 G−1
ν (t, x + L)

[
Gν(t, x + h) − Gν(t, x)

]
if x ≤ 0.

Clearly,

∣∣∣
∣

f (t, x, h)

h (Gν(t, x + L) + Gν(t, x − L))

∣∣∣
∣ ≤ |I (t, x, h)| + |I (t, x,−h)| . (4.14)

We will bound |I (t, x, h)| for −βL ≤ h ≤ βL . If x ≥ 0, then

I (t, x, h) = 1

h

(
e− (x+h)2

2νt + (x−L)2
2νt − e− x2

2νt + (x−L)2
2νt

)
,

and so

∂

∂x
I (t, x, h) = − 1

νt
e− (x+h)2

2νt + (x−L)2
2νt − L

νt
I (t, x, h).

Hence,

|I (t, x, h)| ≤
x∫

0

(νt)−1e− (y+h)2

2νt + (y−L)2

2νt dy + L

νt

x∫

0

|I (t, y, h)| dy + |I (t, 0, h)| .

Let C be the constant defined in the proposition. Then

|I (t, 0, h)| ≤ C√
2νt

e
L2
2νt , for all h ∈ R.

Since |h| ≤ βL ,

x∫

0

1

νt
e− (y+h)2

2νt + (y−L)2

2νt dy ≤
∞∫

0

1

νt
e− (y+h)2

2νt + (y−L)2

2νt dy = e
L2−h2

2νt

L + h
≤ e

L2
2νt

(1 − β)L
.

Therefore,

|I (t, x, h)| ≤ Ct,L ,β + L

νt

x∫

0

|I (t, y, h)| dy,

with

Ct,L ,β :=
(

C√
2νt

+ 1

(1 − β)L

)
e

L2
2νt .
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Apply Bellman–Gronwall’s lemma (see [18, Lemma 12.2.2]) to get

|I (t, x, h)| ≤ Ct,L ,β e
Lx
νt = Ct,L ,β e

L|x |
νt ,

and so, by definition of I (t, x, h),

|Gν(t, x + h) − Gν(t, x)| ≤ Ct,L ,β |h| (Gν(t, x + L) + Gν(t, x − L)) e
L|x |
νt .

(4.15)

By symmetry, for x ≤ 0, we get the same bound for |I (t, x, h)|. Hence, from (4.14),

| f (t, x, h)| ≤ 2Ct,L ,β |h| (Gν(t, x + L) + Gν(t, x − L)) exp

(
L|x |
νt

)
. (4.16)

Finally, some calculations show that

(
Gν(t, x + L) + Gν(t, x − L)

)
e

L|x |
νt

= Gν(t, x)e− L2
2νt + Gν(t, x − 2L)e

3L2
2νt 1{x≥0} + Gν(t, x + 2L)e

3L2
2νt 1{x≤0}

≤ Gν(t, x)e− L2
2νt +

(
Gν(t, x − 2L) + Gν(t, x + 2L)

)
e

3L2
2νt .

The desired conclusions now follow from (4.15) and (4.16). ��
Proof of Proposition 4.4 Assume that ς = 0. Set z̄ = (z1 + z2)/2. Set

I (t, x; t ′, x ′) =
∫∫

[0,t]×R

dsdy
[
J ∗

0 (s, y)
]2 (

Gν (t − s, x − y) − Gν(t
′ − s, x ′ − y)

)2
.

Write
[
J ∗

0 (s, y)
]2 as a double integral and then use Lemma 5.3 to get

I (t, x; t ′, x ′) =
t∫

0

ds
∫∫

R2

|μ|(dz1)|μ|(dz2) G2ν(s, z1 − z2)

×
∫

R

dy Gν/2 (s, y − z̄)
(
Gν (t − s, x − y) − Gν(t

′ − s, x ′ − y)
)2

.

(4.17)
In the following, we use

∫
dy G(G − G)2 to denote the dy–integral in (4.17). Expand

(G − G)2 = G2 − 2GG + G2 and apply Lemma 5.3 to each term:

(Gν (t − s, x − y) − Gν(t
′ − s, x ′ − y))2

= 1√
4πν(t − s)

Gν/2 (t − s, x − y)+ 1√
4πν(t ′ − s)

Gν/2
(
t ′ − s, x ′ − y

)
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− 2G2ν

(
t+t ′

2
−s, x−x ′

)
Gν/2

(
2(t − s)(t ′ − s)

t+t ′−2s
, y − (t − s)x ′+(t ′ − s)x

t+t ′−2s

)
.

Then integrate over y using the semigroup property of the heat kernel:

∫

R

dy Gν/2(s, y − z̄)
(
Gν(t − s, x − y) − Gν(t

′ − s, x ′ − y)
)2

= 1√
4πν(t − s)

Gν/2 (t, x − z̄) + 1√
4πν(t ′ − s)

Gν/2(t
′, x ′ − z̄)

− 2 G2ν

(
t + t ′

2
− s, x − x ′

)

× Gν/2

(
2(t − s)(t ′ − s)

t + t ′ − 2s
+ s,

(t − s)x ′ + (t ′ − s)x

t + t ′ − 2s
− z̄

)
. (4.18)

Property (4.3) Set x = x ′ in (4.17) and let h = t ′ − t . Then 2(t−s)(t ′−s)
t+t ′−2s + s =

t + (t−s)h
2(t−s)+h and (4.18) becomes

∫
dy G(G − G)2 =

⎡

⎢⎢
⎣

1

(4πν(t − s))
1
2

+ 1

(4πν(t ′ − s))
1
2

− 1
(
πν
(

t+t ′
2 − s

)) 1
2

⎤

⎥⎥
⎦

× Gν/2 (t, x − z̄)

+ 1√
4πν(t ′ − s)

(
Gν/2

(
t ′, x − z̄

)

Gν/2 (t, x − z̄)
− 1

)

× Gν/2 (t, x − z̄)

− 1
√

πν
(

t+t ′
2 − s

)

⎛

⎝
Gν/2

(
t + (t−s)h

2(t−s)+h , x − z̄
)

Gν/2 (t, x − z̄)
− 1

⎞

⎠

× Gν/2 (t, x − z̄)

:= I1 + I2 − I3.

We first consider I2. Because 1/n ≤ t ≤ t ′ ≤ n, we have that h ∈ [0, n2t], so by
Lemma 5.7, we find after simplification that

|I2| ≤ 3
√

1 + n2

4
√

πνt (t ′ − s)
G ν(1+n2)

2
(t, x − z̄)

√
h,
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and so

t∫

0

ds G2ν(s, z1 − z2)|I2| ≤ √
h

t∫

0

ds
3
√

1 + n2

4
√

πνt (t ′ − s)

×Gν(1+n2)/2 (t, x − z̄) G2ν(s, z1 − z2).

Apply Lemma 5.4 to Gν(1+n2)/2 (· · · ) G2ν(· · · ) and integrate over dz1dz2 to get

∫∫

R2

|μ|(dz1)|μ|(dz2)

t∫

0

ds G2ν |I2|

≤ 3
(
1 + n2

)√
h

2
√

πν

(
|μ| ∗ G2ν(1+n2)(t, ·)

)2
(x)

t∫

0

ds√
s(t ′ − s)

.

By the Beta integral (see (3.3)), the ds–integral is less than or equal to π . So

∫∫

R2

|μ|(dz1)|μ|(dz2)

t∫

0

ds G2ν(· · · )|I2|

≤ 3
(
1 + n2

)√
π

2
√

ν

(
|μ| ∗ G2ν(1+n2)(t, ·)

)2
(x)

√
h. (4.19)

As for I3, notice that since s ∈ [0, t], (t−s)h
2(t−s)+h ≤ th

h ≤ n2t for all h ≥ 0. Apply

Lemma 5.7 with r = (t−s)h
2(t−s)+h to obtain that

∣
∣∣∣∣∣

Gν/2

(
t + (t−s)h

2(t−s)+h , x − z̄
)

Gν/2 (t, x − z̄)
− 1

∣
∣∣∣∣∣
≤ 3

2
√

2
exp

(
n2(x − z̄)2

νt
(
1 + n2

)

) √
h√
t
, for all h ≥ 0,

where we have used the inequality (t−s)h
2(t−s)+h ≤ h

2 . Multiplying out the exponentials,
we obtain

|I3| ≤ 3
√

1 + n2

2
√

2πνt (t − s)
Gν(1+n2)/2 (t, x − z̄)

√
h.

Then by the same arguments as for I2, we have that

∫∫

R2

|μ|(dz1)|μ|(dz2)

t∫

0

ds G2ν |I3| = 3
(
1 + n2

)√
π√

2ν

(
|μ| ∗ G2ν(1+n2)(t, ·)

)2
(x)

√
h.
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Now let us consider I1. Apply Lemma 5.4 to G2ν (s, z1 − z2) Gν/2 (t, x − z̄) to get

t∫

0

ds G2ν(s, z1 − z2)|I1| ≤
√

t√
πν

G2ν(t, x − z1)G2ν(t, x − z2)

×
t∫

0

ds

∣∣
∣∣∣
(s(t − s))−

1
2 + (s(t ′ − s)

)− 1
2 − 2

(
s

[
t + t ′

2
− s

])− 1
2

∣∣
∣∣∣
.

The integrand is bounded by

∣∣∣∣∣
(s(t − s))−

1
2 −

(
s

[
t + t ′

2
− s

])− 1
2

∣∣∣∣∣
+
∣∣∣∣∣
(
s(t ′ − s)

)− 1
2 −

(
s

[
t + t ′

2
− s

])− 1
2

∣∣∣∣∣
.

Taking into account the signs of the increment, this is equal to [s(t − s)]−1/2 −[
s(t ′ − s)

]−1/2. Integrate the r.h.s. of the above inequality using the formula
∫ t

0
ds√

s(t ′−s)
= 2 arctan

( √
t√

t ′−t

)
for all t ′ > t ≥ 0 to find that

t∫

0

ds

∣∣∣∣∣
(s(t−s))−

1
2 + (s(t ′−s)

)− 1
2 −2

(
s

[
t + t ′

2
− s

])− 1
2

∣∣∣∣∣
≤π−2 arctan

(√
t/h
)

.

It is an elementary calculus exercise to show that the function f (x) := x (π − 2 arctan
(x)) for x ≥ 0 is non-negative and bounded from above, and f (x) ≤ limx→+∞ f (x)

= 2. Hence, π − 2 arctan
(√

t/h
) ≤ 2

√
h/t . Therefore,

∫∫

R2

|μ|(dz1)|μ|(dz2)

t∫

0

ds G2ν(s, z1 − z2)|I1| ≤ 2
√

h√
πν

(|μ| ∗ G2ν(t, ·))2 (x).

(4.20)

We conclude from (4.19)–(4.20) that for all (t, x), (t ′, x) ∈ [1/n, n]×[−n, n] with
t ′ > t ,

I (t, x; t ′, x) ≤
(

C�
ν (|μ| ∗ G2ν(t, ·))2 (x) + C∗

n,ν

(
|μ| ∗ G2ν(1+n2)(t, ·)

)2
(x)

) √
h,

where

C�
ν = 2√

πν
, and C∗

n,ν :=
3
√

π
(

1 + √
2
) (

1 + n2
)

2
√

ν
.
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As for the contribution of the constant ς , it corresponds to the initial data μ(dx) ≡ ς dx
and we apply Proposition 5.2. Finally, by the smoothing effect of the heat kernel
(Lemma 2.3), we can choose the following constant

Cn,1 = ς2

√
2 − 1√
πν

+ sup 2
(

C�
ν (|μ| ∗ G2ν(s, ·))2 (y)

+ C∗
n,ν

(
|μ| ∗ G2ν(1+n2)(s, ·)

)2
(y)
)
,

for (4.3), where the supremum is over (s, y) ∈ [1/n, n] × [−n, n]. This proves (4.3).

Property (4.4) Set t = t ′ in (4.17) and x̄ = x+x ′
2 . Consider the integral in (4.17)

t∫

0

ds G2ν(s, z1 − z2)

∫
dy G(G − G)2,

which is denoted by
∫

ds G
∫

dy G(G − G)2 for convenience. By (4.18),

∫
dy Gν/2(s, y − z̄)

(
Gν(t − s, x − y) − Gν(t − s, x ′ − y)

)2

= 1√
4πν(t − s)

[
Gν/2 (t, x − z̄) + Gν/2(t, x ′ − z̄)

]

− 2 G2ν(t − s, x − x ′)Gν/2(t, x̄ − z̄).

(4.21)

Then apply Lemma 5.5 to integrate over s:

∫
ds G

∫
dy G(G − G)2 = 1

4ν

(
Gν/2 (t, x − z̄)+Gν/2(t, x ′− z̄)

)
erfc

( |z1 − z2|√
4νt

)

− 1

2ν
Gν/2 (t, x̄ − z̄) erfc

(
1√
2t

[
|z1 − z2|√

2ν
+
∣
∣x − x ′∣∣

√
2ν

])

.

It follows from the definition of erfc(x) that erfc (|x | + h) ≥ erfc (|x |) − 2e−x2
√

π
h for

h ≥ 0 and we apply this inequality to the last factor to obtain

∫
ds G

∫
dy G(G − G)2

≤ 1

ν
Gν/2 (t, x̄ − z̄)

∣
∣x − x ′∣∣
√

4πνt
exp

(
− (z1 − z2)

2

4νt

)

+ 1

4ν

[
Gν/2 (t, x − z̄) + Gν/2

(
t, x ′ − z̄

)− 2Gν/2 (t, x̄ − z̄)

]
erfc

( |z1 − z2|√
4νt

)
.
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Now apply Lemma 4.7 with h = x ′−x
2 , L = 2n and β = 1/2: there are two constants

C ′
n = sup

s∈[1/n,n]
C2n,1/2,νs = C

√
n√

2ν
+ 1

n
, C ≈ 0.451256,

C ′′
n = sup

s∈[1/n,n]
C ′′

2n,1/2,νs = C ′
n exp

(
6 n3

ν

)
,

where C ′
L ,β,νs and C ′′

L ,β,νs are defined in Lemma 4.7, such that for
∣∣
∣ x−x ′

2

∣∣
∣ ≤ βL = n,

∣∣∣∣Gν/2 (t, x − z̄) + Gν/2
(
t, x ′ − z̄

)− 2Gν/2 (t, x̄ − z̄)

∣∣∣∣

≤ {C ′′
n

[
Gν/2 (t, x̄ − z̄ − 2L) + Gν/2 (t, x̄ − z̄ + 2L)

]

+ C ′
n Gν/2 (t, x̄ − z̄)

} ∣∣x − x ′∣∣ .

Note that t ≥ 1/n is essential for this inequality to be valid. By Lemma 5.5, we have

that erfc
( |z1−z2|√

4νt

)
≤ √

4πνt G2ν (t, z1 − z2), and so

∣∣∣∣

∫
ds G

∫
dy G(G − G)2

∣∣∣∣

≤
(

1

ν
+

√
π t√
4ν

C ′
n

) ∣∣x − x ′∣∣ Gν/2 (t, x̄ − z̄) G2ν (t, z1 − z2)

+
√

π t C ′′
n√

4ν

∣∣x − x ′∣∣ Gν/2 (t, x̄ − z̄ − 2L) G2ν (t, z1 − z2)

+
√

π t C ′′
n√

4ν

∣∣x − x ′∣∣ Gν/2 (t, x̄ − z̄ + 2L) G2ν (t, z1 − z2) .

Now apply Lemma 5.4:

∣∣∣
∣

∫
ds G

∫
dy G(G − G)2

∣∣∣
∣

≤
(

1

ν
+

√
πn√
4ν

C ′
n

) ∣
∣x − x ′∣∣G2ν (t, x̃1 − z1) G2ν (t, x̃1 − z2)

+
√

πn C ′′
n√

4ν

∣∣x − x ′∣∣ G2ν (t, x̃2 − z1) G2ν (t, x̃2 − z2)

+
√

πn C ′′
n√

4ν

∣∣x − x ′∣∣ G2ν (t, x̃3 − z1) G2ν (t, x̃3 − z2) ,

where x̃1 = x̄ , x̃2 = x̄ − 2L and x̃3 = x̄ + 2L . Clearly, x̃i ∈ [−5n, 5n] for all
i = 1, 2, 3. Finally, after integrating over |μ|(dz1) and |μ|(dz2), we see that

I (t, x; t, x ′) ≤ C ′
n,3

∣∣x − x ′∣∣
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for all t ∈ [1/n, n], and x, x ′ ∈ [−n, n], where the constant is equal to

C ′
n,3 =

(
1

ν
+

√
πn√
4ν

(
C ′

n + 2C ′′
n

))
sup

(s,y)∈[1/n,n]×[−5n,5n]
(|μ| ∗ G2ν(s, ·))2 (y) .

As for the contribution of the constant ς , it corresponds to the initial data |μ|(dx) ≡
ς dx and we apply Proposition 5.2. Finally, one can choose, for (4.4),

Cn,3 = ς2

ν
+
(

2

ν
+

√
πn√
ν

(
C ′

n + 2C ′′
n

))
sup

(s,y)∈[1/n,n]×[−5n,5n]
(|μ| ∗ G2ν(s, ·))2 (y) .

This constant Cn,3 is clearly finite. This completes the proof of (4.4).

Property (4.5) We first consider the contribution of J ∗
0 (t, x). As before, let

I
(
t, x; t ′, x ′) =

∫∫

[t,t ′]×R

dsdy
[
J ∗

0 (s, y)
]2

G2
ν(t

′ − s, x ′ − y).

Set z̄ = (z1 + z2)/2. Similar to the arguments leading to (4.17), we have

I
(
t, x; t ′, x ′) =

t ′∫

t
ds
∫∫

R2

|μ|(dz1)|μ|(dz2) G2ν(s, z1 − z2)

× ∫
R

dy Gν/2 (s, y − z̄) G2
ν

(
t ′ − s, x ′ − y

)
. (4.22)

Apply Lemma 5.3 to G2
ν

(
t ′ − s, x ′ − y

)
and then integrate over y,

I
(
t, x; t ′, x ′) =

t ′∫

t

ds
∫∫

R2

|μ|(dz1)|μ|(dz2)
1√

4πν(t ′ − s)

×G2ν(s, z1 − z2)Gν/2(t
′, x ′ − z̄).

Now apply Lemma 5.4 to G2ν(s, z1 − z2)Gν/2
(
t ′, x ′ − z̄

)
. Then by Lemma 5.8 and

the fact that arcsin(x) ≤ πx/2 for x ∈ [0, 1], we see that

I
(
t, x; t ′, x ′)≤ ∣∣J ∗

0

(
2t ′, x ′)∣∣2 2

√
t ′√

πν
arcsin

(√
t ′ − t

t ′

)

≤ ∣∣J ∗
0

(
2t ′, x ′)∣∣2

√
π

ν

√
t ′ − t .

Therefore,

I
(
t, x; t ′, x ′) ≤ C ′

n,5

√
t ′ − t, with C ′

n,5 =
√

π

ν
sup

(s,y)∈[1/n,n]×[−n,n]

∣∣J ∗
0 (2s, y)

∣∣2 .
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As for the contribution of ς , it corresponds to the initial data |μ|(dx) ≡ ς dx and we
apply Proposition 5.2. Finally, we can choose

Cn,5 = ς2

√
πν

+ 2

√
π

ν
sup

(s,y)∈[1/n,n]×[−n,n]

∣∣J ∗
0 (2s, y)

∣∣2 (4.23)

for (4.5). This completes the proof of (4.5) and therefore part (1) of Proposition 4.4.

��
Proof of Proposition 4.5 (1) We first prove (4.7) and (4.8). Denote

I (t, x; t ′, x ′) =
∫∫

[0,t]×R

dsdy
(∣∣J ∗

0

∣∣2 � G2
ν

)
(s, y)

(
Gν (t − s, x − y)

− Gν(t
′ − s, x ′ − y)

)2
.

Let z̄ = (z1 + z2)/2. As in (4.17), replace
∣∣J ∗

0 (u, z)
∣∣2 by the double integral. By

Lemma 5.3,

I
(
t, x; t ′, x ′) =

∫∫

R2

|μ|(dz1)|μ|(dz2)

t∫

0

ds

s∫

0

du
1√

4νπ(s − u)
G2ν(u, z1 − z2)

×
∫∫

R2

dydz Gν/2 (u, z − z̄) Gν/2(s − u, y − z)

× (Gν (t − s, x − y) − Gν(t
′ − s, x ′ − y)

)2
.

We first integrate over dz using the semigroup property and then integrate over du by
using Lemma 5.5 and use the fact that s ≤ t ≤ n to obtain

I
(
t, x; t ′, x ′) ≤

√
πn√
4ν

t∫

0

ds
∫∫

R2

|μ|(dz1)|μ|(dz2) G2ν(s, z1 − z2)

×
∫

R

dy Gν/2 (s, y − z̄)
(
Gν(t − s, x − y) − Gν(t

′ − s, x ′ − y)
)2

. (4.24)

Comparing this upper bound with (4.17), we can apply Proposition 4.4 to conclude
that (4.7) and (4.8) are true with the constants Cn,2 and Cn,4 given in (4.6). As for
(4.9), let

I
(
t, x; t ′, x ′) =

∫∫

[t,t ′]×R

dsdy
(∣∣J ∗

0

∣∣2 � G2
ν

)
(s, y) G2

ν(t
′ − s, x ′ − y).
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By arguments similar to those leading to (4.24), we have that

I
(
t, x; t ′, x ′) ≤

√
πn

4ν

t ′∫

t

ds
∫∫

R2

|μ|(dz1)|μ|(dz2)G2ν(s, z1 − z2)

×
∫

R

dy Gν/2 (s, y − z̄) G2
ν(t

′ − s, x ′ − y).

Comparing this upper bound with (4.22), we can apply Proposition 4.4 to conclude
that (4.9) is true with the corresponding constant Cn,6 given in (4.6). This completes
the proof of part (1) of Proposition 4.5.

4.4 Proofs of part (2) of the Propositions 4.4 and 4.5

Lemma 4.8 For a ≥ 1 and b ≥ (a e)−1, we have that |x | ≤ eb|x |a for all x ∈ R.

Proof The case where x = 0 is clearly true. We only need to consider the case where
x > 0. Equivalently, we need to solve the critical case where the graphs of the two
functions log x and b xa intersect exactly once (x > 0), that is,

log x = b xa, and
1

x
= a b xa−1,

which implies x = e1/a and b = (a e)−1. When b is bigger than this critical value,
the function b|x |a will dominate log x for all x > 0. ��

Lemma 4.9 Let g(x) = ec|x |a with c > 0 and a > 1. For all n > 0, the following
properties hold:

(1) For all x, z ∈ R, 0 ≤ t ≤ t ′ ≤ n,

∣∣∣g
(

x − √
t z
)

− g
(

x − √
t ′ z
)∣∣∣ ≤ a c exp

(
c1|x |a + c2|z|a

) ∣∣t ′ − t
∣∣1/2

,

where the two constants c1 := c1(a, c) and c2 := c2(n, a, c) can be chosen as
follows:

c1(a, c) =
(

c + a − 1

a e

)
2a−1, and c2(n, a, c) = c1(a, c) na/2 + 1

a e
.

(2) For all x, x ′ ∈ [−n, n], z ∈ R and t ∈ [0, n],
∣∣∣g
(

x − √
t z
)

− g
(

x ′ − √
t z
)∣∣∣ ≤ c3 exp

(
c4|z|a

) ∣∣x ′ − x
∣∣
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where the two constants c3 := c3(n, a, c) and c4 := c4(n, a, c) can be chosen as
follows:

c3(n, a, c) := a c ec1 na
, and c4(n, a, c) = c1 na/2.

Proof (1) Because a > 1, the function g belongs to C1(R), is convex and g′(x) ≥ 0
for x ≥ 0. Hence,

∣∣∣g
(

x − √
t z
)

− g
(

x − √
t ′ z
)∣∣∣ ≤ ∣∣g′ (|x | + √

n |z|)∣∣ ·
∣∣∣
√

t ′ z − √
t z
∣∣∣ .

Let b = (a e)−1. By Lemma 4.8, |g′(x)| = a c |x |a−1ec|x |a ≤ a c e(c+(a−1)b)|x |a . Thus

∣
∣g′ (|x | + √

n |z|)∣∣ ≤ a c e(c+(a−1)b)(|x |+√
n |z|)a ≤ a c ec1|x |a+c1na/2|z|a , (4.25)

where we have applied the inequality (x + y)a ≤ 2a−1(xa + ya) for all x, y ≥ 0.
Clearly,

|√t ′ − √
t | ≤ √

t ′ − t . (4.26)

Finally, apply Lemma 4.8 to |z|, and combining all the above bounds proves (1).
(2) Similarly to (1),

∣∣∣g
(

x − √
t z
)

− g
(

x ′ − √
t z
)∣∣∣ ≤ ∣∣g′ (|n| + √

n |z|)∣∣ · ∣∣x − x ′∣∣ ,

and by (4.25),
∣∣g′ (|n| + √

n |z|)∣∣ ≤ a c ec1na+c1na/2|z|a . This proves (2). ��

For c > 0 and a ∈ [0, 2[ , define the constant

Ka,c(νt) :=
(

ec|·|a ∗ Gν(t, ·)
)

(0) .

For 0 ≤ t ≤ n, we have that

Ka,c(νt) =
∫

R

dy ec(
√

t |y|)a

Gν(1, y) ≤
∫

R

dy ec(
√

n |y|)a
Gν(1, y) = Ka,c(νn).

(4.27)

Proof of Proposition 4.4 (2) Because μ ∈ M∗
H (R), there are a function f (x) and

two constants a ∈ [1, 2[ and c > 0 such that μ(dx) = f (x)dx and c =
supx∈R | f (x)|e−|x |a < +∞. In the following, we assume that x, x ′ ∈ [−n, n], and
t, t ′ ∈ [0, n]. Set g(x) = e2a |x |a and assume that ς = 0. From (4.17),
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I (t, x; t ′, x ′) ≤c2

t∫

0

ds
∫∫

R2

dz1dz2 e|z1|a+|z2|a G2ν(s, z1 − z2)

×
∫

R

dy Gν/2 (s, y − z̄)
(
Gν (t − s, x − y) − Gν(t

′ − s, x ′ − y)
)2

.

We shall apply the change of variables z = z̄ and w = �z: since

|z1|a + |z2|a =
∣
∣∣z + w

2

∣
∣∣
a +

∣
∣∣z − w

2

∣
∣∣
a ≤ 2a−1

(
|z|a +

∣
∣∣
w

2

∣
∣∣
a)× 2 = 2a |z|a + |w|a,

we see that

e|z1|a+|z2|a ≤ e2a |z|a+|w|a = e|w|a g(z),

and it follows that

I (t, x; t ′, x ′) ≤ c2

t∫

0

ds
∫

R

dz
(

e|·|a ∗ G2ν(s, ·)
)

(0)g(z)

×
∫

R

dy Gν/2(s, y − z)
(
Gν(t − s, x − y) − Gν(t

′ − s, x ′ − y)
)2

≤ c2 Ka,1(2νn)

t∫

0

ds
∫

R

dz g(z)

×
∫

R

dy Gν/2(s, y − z)
(
Gν(t − s, x − y) − Gν(t

′ − s, x ′ − y)
)2

,

(4.28)

where the second inequality is due to (4.27).

Property (4.3) For the moment, we continue to assume that ς = 0. Set x = x ′. Apply
(4.18) with x = x ′ and z̄ replaced by z, integrate over dz, and use (4.28) to see that,

I (t, x; t ′, x) ≤c2 Ka,1(2νn)

t∫

0

ds

(
1√

4πν(t − s)

(
g ∗ Gν/2(t, ·)

)
(x)

+ 1√
4πν(t ′ − s)

(
g ∗ Gν/2(t

′, ·)) (x)

− 2
√

4πν
(

t+t ′
2 − s

)

(
g ∗ Gν/2

(
t + (t − s)h

2(t − s) + h
, ·
))

(x)

)
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≤ c2 Ka,1(2νn)

t∫

0

ds (I1 + I2 + I3) ,

where, letting h = t ′ − t ,

I1 =
[

(4πν(t − s))−
1
2 + (4πν(t ′ − s)

)− 1
2 −

(
πν

(
t + t ′

2
− s

))− 1
2
]

× (g ∗ Gν/2(t, ·)
)
(x),

I2 = 1√
4πν(t ′ − s)

[(
g ∗ Gν/2(t

′, ·)) (x) − (g ∗ Gν/2(t, ·)
)
(x)
]
,

I3 = 2
√

4πν
(

t+t ′
2 − s

)

[(
g ∗ Gν/2

(
t + (t − s)h

2(t − s) + h
, ·
))

(x)

− (g ∗ Gν/2(t, ·)
)
(x)

]
.

Set t̄ = t+t ′
2 . By (4.26),

t∫

0

I1ds = 1√
πν

(√
t + √

t ′ − √
h − 2

√
t̄ + 2

√
t̄ − t

) (
g ∗ Gν/2(t, ·)

)
(x)

≤ 1√
πν

(∣∣
∣
√

t −
√

t̄
∣∣
∣+
∣∣
∣
√

t ′ −
√

t̄
∣∣
∣−

√
h + 2

√
h

2

)
(
g ∗ Gν/2(t, ·)

)
(x)

≤ 1√
πν

(

4

√
h

2
− √

h

)
(
g ∗ Gν/2(t, ·)

)
(x).

By Lemma 4.9, for some constants ci > 0, i = 1, 2,

|I2| ≤ 1√
4πν(t ′−s)

∫

R

dz
∣∣
∣g
(
x − √

t z
)− g

(
x − √

t ′ z
)∣∣
∣Gν/2(1, z)

≤ 1√
4πν(t−s)

a 2aec1|x |a (ec2|·|a ∗ Gν/2(1, ·)) (0)
√

h.

Hence, for all 0 ≤ t ≤ t ′ ≤ n and x ∈ [−n, n],

t∫

0

ds |I2| ≤ a 2a√
n√

πν
ec1|n|a Ka,c2

(ν

2

) √
h .
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Similarly, because (t−s)h
2(t−s)+h ≤ h

2 , for all 0 ≤ s ≤ t ≤ t ′ ≤ n and x ∈ [−n, n],

t∫

0

ds |I3| ≤ a 2a√
n√

2πν
ec1|n|a Ka,c2

(ν

2

) √
h .

Therefore, for all 0 ≤ t ≤ t ′ ≤ n and x ∈ [−n, n], I (t, x; t ′, x) ≤ C̃∗
n,1

√
t ′ − t with

C̃∗
n,1 = c2 Ka,1(2νn)√

2πν

[ (√
2 + 1

)
a 2a√

n ec1|n|a Ka,c2

(ν

2

)

+
(

4 − √
2
)

sup
(s,y)∈[0,n]×[−n,n]

(
e2a |·|a ∗ Gν/2(s, ·)

)
(y)

]
.

Finally, as for (4.3), the contribution of the constant ς can be calculated by using
Proposition 5.2. Therefore, one can choose

C∗
n,1 = ς2

√
2 − 1√
πν

+ 2 C̃∗
n,1.

Property (4.4) Assume again that ς = 0. Set t = t ′ and x̄ = x+x ′
2 . Recalling (4.21),

we see that the inequality (4.28) reduces to

I (t, x; t, x ′) ≤ c2 Ka,1(2νn)

t∫

0

ds
∫

R

dz g(z)

{
1√

4πν(t − s)

[
Gν/2(t, x − z)

+ Gν/2(t, x ′ − z)
]− 2 G2ν(t − s, x − x ′) Gν/2(t, x̄ − z)

}
.

Then integrate over ds using Lemma 5.6:

I (t, x; t, x ′) ≤ c2 Ka,1(2νn)

∫

R

dz g(z)

{ √
t√

πν

[
Gν/2(t, x − z) + Gν/2(t, x ′ − z)

]

−2

[
2t G2ν(t, x − x ′) − 1

2ν
|x − x ′| erfc

( |x − x ′|√
4νt

)]
Gν/2(t, x̄ − z)

}
.

Denote F(x) = (g ∗ Gν/2(t, ·)
)
(x). Then integrating over dz gives

I (t, x; t, x ′) ≤ c2 Ka,1(2νn)

{ √
t√

πν

[
F(x) + F(x ′)

]

− 2

[ √
t√

πν
e− (x−x ′)2

4νt − 1

2ν
|x − x ′| erfc

( |x − x ′|√
4νt

)]
F(x̄)

}
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≤ c2 Ka,1(2νn)

{ √
t√

πν
|F(x) − F(x̄)| +

√
t√

πν

∣∣F(x ′) − F(x̄)
∣∣

+ 2
√

t√
πν

(
1 − e− |x−x ′ |2

4νt

)
F(x̄) + 1

ν
|x − x ′| F(x̄)

}
.

Notice that 0 ≤ 1−e−x2/2 ≤ C̃ |x |, where the universal constant C̃ is given in Lemma
4.7. By part (2) of Lemma 4.9, for some constants ci , i = 3, 4,

|F(x) − F(x̄)| ≤
∫

R

dz
∣∣∣g
(

x − √
t z
)

− g
(

x̄ − √
t z
)∣∣∣Gν/2(1, z)

≤ c3

(
ec4|·|a ∗ Gν/2(1, ·)

)
(0) |x − x̄ |

= c3

2
Ka,c4

(ν

2

)
|x − x ′|.

Similarly,
∣∣F(x ′) − F(x̄)

∣∣ ≤ c3
2 Ka,c4

(
ν
2

) |x − x ′|. Hence,

I (t, x; t, x ′) ≤ c2 Ka,1(2νn)

{
c3

√
n√

πν
Ka,c4

(ν

2

)
+
(

C̃
√

2

ν
√

π
+ 1

ν

)

F(x̄)

}
|x − x ′|.

Therefore, for all 0 ≤ t ≤ n and x, x ′ ∈ [−n, n], I (t, x; t, x ′) ≤ C̃∗
n,3

∣∣x − x ′∣∣ with

C̃∗
n,3 = c2 Ka,1(2νn)

{
c3

√
n√

πν
Ka,c4

(ν

2

)

+
(

C̃
√

2

ν
√

π
+ 1

ν

)

sup
(s,y)∈[0,n]×[−n,n]

(
g ∗ Gν/2(s, ·)

)
(y)

}
,

and C̃∗
n,3 < +∞ by definition of g. Finally, the contribution of the constant ς in (4.4)

is given in Proposition 5.2. Therefore, one can choose

C∗
n,3 = ς2

ν
+ 2 C̃∗

n,3 .

Property (4.5) As for (4.5), notice that J ∗
0 (t, x) ≤ c

(
e|·|a ∗ Gν(t, ·)

)
(x). By check-

ing the proof of part (1) (see (4.23)), one can choose,

C∗
n,5 = ς2

√
πν

+ 2 c2
√

π/ν sup
(s,y)∈[0,n]×[−n,n]

(
e|·|a ∗ Gν(2s, ·)

)2
(y).

This completes the proof of part (2) of Proposition 4.4.

��
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Proof of Proposition 4.5 (2) If μ ∈ M∗
H (R), then by Proposition 4.4 (2), the l.h.s. of

(4.7) is bounded by

C∗
n,1

√
t ′ − t

(
1 � G2

ν

)
(t, x) = C∗

n,1

√
t√

πν

√
t ′ − t ≤ C∗

n,1

√
n√

πν

√
t ′ − t .

Hence, C∗
n,2 =

√
n√

πν
C∗

n,1. The same arguments apply to the other two constants C∗
n,4

and C∗
n,6, i.e., (4.8) and (4.9). Note that it was not possible to use the above argument in

the proof of part (1) of Proposition 4.4. This completes the proof of Proposition 4.5 (2).

4.5 Checking the initial condition

Proof of Proposition 3.4 Because u(t, x) = J0(t, x)+ I (t, x), and because it is stan-
dard that (see [14, Chapter 7, Sect. 6] and also [4, Lemma 2.6.14, p.89]),

lim
t→0+

∫

R

dx J0(t, x)φ(x) =
∫

R

μ(dx) φ(x),

we only need to prove that

lim
t→0+

∫

R

dx I (t, x)φ(x) = 0 in L2(�).

Recall that the Lipschitz continuity of ρ implies the linear growth condition (2.1). Fix
φ ∈ C∞

c (R). Denote L(t) := ∫
R

I (t, x)φ(x)dx . By the stochastic Fubini theorem
(see [28, Theorem 2.6, p. 296]), whose assumptions are easily checked,

L(t) =
t∫

0

∫

R

⎛

⎝
∫

R

dx Gν(t − s, x − y)φ(x)

⎞

⎠ ρ(u(s, y))W (ds, dy).

Hence, by (2.1),

E

[
L(t)2

]
≤ L2

ρ

t∫

0

ds
∫

R

dy

⎛

⎝
∫

R

dx Gν(t − s, x − y)φ(x)

⎞

⎠

2
(
ς2 + ||u(s, y)||22

)
.

By the moment formula (2.5), we can write the above upper bound as

E

[
L(t)2

]
≤ L2

ρ [L1(t) + L2(t) + L3(t) + L4(t)] ,
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where

L1(t) =
t∫

0

ds
∫

R

dy

⎛

⎝
∫

R

dx Gν(t − s, x − y)φ(x)

⎞

⎠

2

J 2
0 (s, y),

L2(t) =
t∫

0

ds
∫

R

dy

⎛

⎝
∫

R

dx Gν(t − s, x − y)φ(x)

⎞

⎠

2
(

J 2
0 � K

)
(s, y),

L3(t) = ς2

t∫

0

ds H(s)
∫

R

dy

⎛

⎝
∫

R

dx Gν(t − s, x − y)φ(x)

⎞

⎠

2

,

L4(t) = ς2

t∫

0

ds
∫

R

dy

⎛

⎝
∫

R

dx Gν(t − s, x − y)φ(x)

⎞

⎠

2

.

From now on, we may assume that μ ∈ MH,+(R), because otherwise, one can simply
replace the above J0(s, y) by J ∗

0 (s, y) = (|μ| ∗ Gν(s, ◦)) (y).

(1) Consider L1(t) first. Write out both J 2
0 (s, y) and

(∫
R

dx Gν(t − s, x − y)φ(x)
)2

in the forms of double integrals, and apply Lemma 5.3, to see that

L1(t) =
t∫

0

ds
∫

R

dy

⎛

⎜
⎝
∫∫

R2

dx1dx2 Gν/2(t − s, x̄ − y)G2ν(t − s,�x)φ(x1)φ(x2)

⎞

⎟
⎠

×
∫∫

R2

μ(dz1)μ(dz2) Gν/2(s, z̄ − y)G2ν(s,�z), (4.29)

where x̄ = x1+x2
2 , �x = x1 − x2 and similarly for z̄ and �z. Integrate over dy first

using the semigroup property of the heat kernel and then integrate over ds by using
Lemma 5.5, we see that

L1(t) =
∫∫

R2

dx1dx2 φ(x1)φ(x2)

∫∫

R2

μ(dz1)μ(dz2)

×Gν/2(t, x̄ − z̄)
1

4ν
erfc

(
1√
4νt

[|�x | + |�z|]
)

.

By (5.2),

erfc

(
1√
4νt

[|�x | + |�z|]
)

≤ e− (|�x |+|�z|)2
4νt ≤ e− |�x |2

4νt e− |�z|2
4νt

= 4πν
√

t G2ν

(
1,

�x√
t

)
G2ν(t,�z).
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By the change of variables y = (x1 + x2)/2 and w = (x1 − x2)/
√

t ,

L1(t) ≤π t
∫∫

R2

dydw G2ν(1, w)φ

(
y +

√
t

2
w

)
φ

(
y −

√
t

2
w

)

×
∫∫

R2

μ(dz1)μ(dz2) Gν/2(t, y − z̄)G2ν(t,�z).

By Lemma 5.4,
∫∫

R2

μ(dz1)μ(dz2) Gν/2(t, y − z̄)G2ν(t,�z) ≤ 2 (μ ∗ G2ν(t, ·))2 (y) = 2J 2
0 (2t, y).

For some constants a and c ≥ 0, |φ(x)| ≤ c 1[−a,a](x). If |y| > a, then the two sets{
w ∈ R :

∣∣∣
√

t
2 w ± y

∣∣∣ ≤ a
}

have empty intersection. Hence,

L1(t) ≤ 2c2π

∫

|y|≤a

dy t J 2
0 (2t, y)

∫

R

dw G2ν(1, w) = 2c2π

∫

|y|≤a

dy t J 2
0 (2t, y).

Clearly, by assuming that t ≤ 1,

√
t J0(2t, y) =

∫

R

μ(dx)
1√
4πν

e− (y−x)2

4νt ≤
∫

R

μ(dx)
1√
4πν

e− (y−x)2

4ν = J0(2, y).

Hence, Lebesgue’s dominated convergence theorem implies that

lim
t→0

√
t J0(2t, y) = 0.

Because
∫
|y|≤a dy J 2

0 (2, y) < +∞, by another application of Lebesgue’s dominated
convergence theorem, we see that limt→0 L1(t) = 0.

(2) As for L2(t), because K(t, x) ≤ Gν/2(t, x) 1√
t
h(t), where h(t) := L2

ρ( 1√
4πν

+
L2

ρ

√
t

2ν
e

L4
ρ t
4ν ) is a nondecreasing function in t , we see that as in (4.29),

L2(t) ≤
t∫

0

ds
∫

R

dy
∫∫

R

dx1dx2 Gν/2(t − s, x̄ − y)G2ν(t − s,�x)φ(x1)φ(x2)

×
s∫

0

dr
∫

R

dw Gν/2(s − r, y − w)
1√

s − r
h(t)

×
∫∫

R2

μ(dz1)μ(dz2) Gν/2(r, z̄ − w)G2ν(r,�z).
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Integrate first over dw using the semigroup property of the heat kernel, and then
integrate over dr using (5.1), to find that

L2(t) ≤πh(t)
√

t

t∫

0

ds
∫

R

dy
∫∫

R

dx1dx2 Gν/2(t − s, x̄ − y)

× G2ν(t − s,�x)φ(x1)φ(x2)

∫∫

R2

μ(dz1)μ(dz2) Gν/2(s, z̄−y)G2ν(s,�z).

Comparing the above bound with (4.29), we see that

L2(t) ≤ π
√

t h(t)L1(t) → 0, as t → 0.

(3) Notice that L3(t) ≤ H(t) L4(t), so we only need to consider L4(t), which
is a special case of L1(t) with μ(dx) = ς dx . Since this μ belongs to MH (R),
limt→0+ L4(t) = 0 by part (1). This completes the proof of Proposition 3.4.

Appendix

Lemma 5.1 If | f (x)| ≤ c1ec2|x |a for all x ∈ R with c1, c2 > 0 and a ∈ ]1, 2[ , then
there is c3 < +∞ such that for all b ∈ ]a, 2[ , | f (x)| ≤ c3e|x |b for all x ∈ R.

Proof Notice that c2|x |a ≥ |x |b if and only if |x | ≤ c
1

b−a
2 . Hence, c2|x |a − |x |b ≤

c2 c
a

b−a
2 − 0 = c

b
b−a
2 . Therefore, c1 exp

(
c2|x |a − |x |b) ≤ c1 exp(c

b
b−a
2 ) =: c3. ��

Proposition 5.2 (Proposition 3.5 of [5]) There are three universal and optimal con-

stants C1 = 1, C2 =
√

2−1√
π

, and C3 = 1√
π

, such that for all s, t with 0 ≤ s ≤ t and

x ∈ R,

t∫

0

dr
∫

R

dz [Gν(t − r, x − z) − Gν(t − r, y − z)]2 ≤ C1

ν
|x − y|,

s∫

0

dr
∫

R

dz [Gν(t − r, x − z) − Gν(s − r, x − z)]2 ≤ C2√
ν

√
t − s,

t∫

s

dr
∫

R

dz [Gν(t − r, x − z)]2 ≤ C3√
ν

√
t − s,
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∫∫

R+×R

(Gν(t − r, x − z) − Gν(s − r, y − z))2 drdz ≤ 2C1

( |x − y|
ν

+
√|t − s|√

ν

)
,

where we use the convention that Gν(t, ·) ≡ 0 if t ≤ 0.

Lemma 5.3 (Lemma 5.4 of [5]) For all t , s > 0 and x, y ∈ R, we have that G2
ν(t, x) =

1√
4πνt

Gν/2(t, x) and Gν(t, x)Gν (s, y) = Gν

(
ts

t+s ,
sx+t y

t+s

)
Gν (t + s, x − y).

Lemma 5.4 (Lemma 5.5 of [5]) For all x, z1, z2 ∈ R and t, s > 0, denote z̄ = z1+z2
2 ,

�z = z1 − z2. Then G1 (t, x − z̄) G1 (s,�z) ≤ (4t)∨s√
ts

G1((4t) ∨ s, x − z1) G1((4t)

∨s, x − z2), where a ∨ b := max(a, b).

Lemma 5.5 (Lemma 5.10 of [5]) For 0 ≤ s ≤ t and x, y ∈ R, we have that

t∫

0

ds Gν(s, x)Gσ (t − s, y) = 1

2
√

νσ
erfc

(
1√
2t

( |x |√
ν

+ |y|√
σ

))
,

where ν and σ are strictly positive. In particular, by letting x = 0, we have that

t∫

0

ds
Gσ (t − s, y)√

2πνs
= 1

2
√

νσ
erfc

( |y|√
2σ t

)
≤

√
π t√
2ν

Gσ (t, y) . (5.1)

Note that the inequality in (5.1) is because by [19, (7.7.1), p.162],

erfc(x) = 2

π
e−x2

∞∫

0

dt
e−x2t2

1 + t2 ≤ 2

π
e−x2

∞∫

0

dt
1

1 + t2 = e−x2
, (5.2)

Lemma 5.6 For t > 0, ν > 0 and x ∈ R, we have that

t∫

0

ds Gν(s, x) = 2t Gν(t, x) − |x |
ν

erfc

( |x |√
2νt

)
.

Proof The case where x = 0 can be easily verified. Assume that x �= 0. By change
of variables y = |x |/√2νs and integration by parts, we have that

t∫

0

ds Gν(s, x)=
+∞∫

|x |√
2νt

dy
|x |√

π ν y2
e−y2 = |x |√

π ν y
e−y2

∣∣
∣∣

|x |√
2νt

+∞
− |x |

ν

+∞∫

|x |√
2νt

dy
2√
π

e−y2
.

Therefore, the conclusion follows from the definition of the function erfc(·). ��
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Lemma 5.7 If ν > 0, t > 0, n > 1 and x ∈ R, then for r ∈ [0, n2t
]
,

∣
∣∣∣
Gν/2 (t + r, x)

Gν/2 (t, x)
− 1

∣
∣∣∣ ≤ 3r

t + r
exp

(
n2x2

νt
(
1 + n2

)

)

≤ 3

2

√
r(1 + n2)√

t
G−1

ν
2

(t, x) G ν(1+n2)
2

(t, x).

Proof Fix ν > 0, t > 0, n > 1, and x ∈ R. For r ∈ [0, n2t
]
, define

gt,x (r) = Gν/2 (t + r, x)

Gν/2 (t, x)
− 1 =

√
t√

t + r
exp

(
x2

νt

r

t + r

)
− 1 .

Clearly gt,x (0) = 0. Notice that

∣∣gt,x (r)
∣∣ ≤

∣∣∣∣exp

(
x2

νt

r

t + r

)
− 1

∣∣∣∣+ exp

(
x2

νt

r

t + r

) ∣∣∣∣

√
t√

t + r
− 1

∣∣∣∣ .

The second term on the right-hand side is bounded by exp
(

n2x2

ν(1+n2)t

)
r

t+r for all

r ∈ [0, n2t
]
, because r

r+t ∈
[
0, n2

1+n2

]
for r ∈ [0, n2t

]
. To bound the first term, we

use the fact that for fixed a > 0 and b > 0, 0 ≤ eah − 1 ≤ eab h
b for all h ∈ [0, b].

Apply this fact to exp
(

x2

νt
r

t+r

)
− 1 with a = x2

νt , h = r
r+t and b = n2

1+n2 : the first

term is bounded by 2 exp
(

n2x2

νt(1+n2)

)
r

r+t for all r ∈ [0, n2t
]
. Adding these two bounds

proves the first inequality. The second one follows from the inequality t + r ≥ 2
√

tr .
��

Lemma 5.8
∫ t ′

t
1√

s(t ′−s)
ds = 2 arcsin

(√
t ′−t

t ′

)
for all t ′ > 0 with t ′ ≥ t ≥ 0.

Proof For t = 0, the l.h.s. reduces to the Beta integral (see, e.g., (3.3). If t ∈ ]0, t ′],
differentiate with respect to t on both sides. ��
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